
2590 Technical Notes 

Inf. J. Heat Man Transfer. Vol. 31, No. 12, pp. 259&2593, 1988 
Printed in Great Britain 

0017-9310;88$3.00+0.00 
8 1988 Pergamon Press plc 

Developing laminar flow and heat transfer in the entrance region 
of regular polygonal ducts 

YUTAKA ASAKO and HIROSHI NAKAMURA 

Department of Mechanical Engineering, Tokyo Metropolitan University, Tokyo, Japan 

and 

MOHAMMAD FAGHRI 

Department of Mechanical Engineering and Applied Mechanics, University of Rhode Island, 
Kingston, RI 02881, U.S.A. 

(Received 9 June 1987 and infinalform 6 May 1988) 

INTRODUCTION 

A SUMMARY of the literature on heat transfer in laminar duct 
flows has been brought together in a book by Shah and 
London [l]. From a study of this information, it is apparent 
that only limited consideration has been given to three- 
dimensional duct problems. The pioneering work is by 
Patankar and Spalding [2] who developed a calculation pro- 
cedure for three-dimensional parabolic flows. This procedure 
was adopted by Prakash and Liu [3] and Karki and Patankar 
[4] to duct problems with a regular cross-section. Recently, 
Lawal and Mujumdar [5] have developed a calculation pro- 
cedure for three-dimensional parabolic flows in ducts with 
irregular cross-section. They coupled the calculation pro- 
cedure for three-dimensional parabolic flows with the 
orthogonal coordinate transformation methodology to 
obtain results for the entrance region of a regular pentagonal 
duct. A careful search of the literature failed to disclose any 
other prior work on the hydrodynamic and thermal entrance 
characteristics of ducts with irregular cross-section. This is 
with the exception of the recent study [6] which has developed 
a solution methodology to obtain three-dimensional fluid 
flow and heat transfer characteristics in the entrance region 
of a rhombic duct. The methodology is applied to a regular 
polygonal duct in this work. 

The numerical methodology that was used in this paper 
utilizes an algebraic coordinate transformation developed in 
previous papers [7, 81 which maps an irregular cross-section 
onto a rectangle. This method was coupled with the cal- 
culation procedure for three-dimensional parabolic prob- 
lems by ref. [2]. The numerical solutions were carried out for 
both uniform wall temperature and uniform wall heat flux 
and for hexagonal, octagonal, square, and circular ducts. 
The solutions were obtained for developing flow and for two 
Prandtl numbers (Pr = 0.7 and 8). The thermal entrance 

solutions were also obtained for slug Aow and for fully 
developed flow. 

FORMULATION 

Description of the problem 
The problem to be considered in this study is schematically 

depicted in Fig. I(a). It involves the determination of three- 
dimensional heat transfer and fluid flow characteristics for 
laminar, incompressible, forced convection in the entrance 
region of a general n-sided polygonal duct. As seen in this 
figure, the fluid enters with a uniform velocity W and a uni- 
form temperature T,. Two types of thermal boundary con- 
ditions are considered. These are a uniform heat input per 
unit axial length with a uniform temperature at any cross- 
section and a uniform temperature both axially and per- 
ipherally. These are the HI and T boundary conditions, 
respectively, of Shah and London [l]. Figure I(b) pictures 
the cross-section of the duct. As seen there, the top and 
bottom walls lie along the x-axis while the other walls do not 
lie along the y-axis. The half width of the cross-section is 
denoted by 6(y). 

The governing equations to be considered are the conti- 
nuity, momentum and energy equations. Constant thermo- 
physical properties are assumed, and natural convection 
is excluded. Then, the governing equations and the dimen- 
sionless variables will be similar to those documented in our 
previous paper [6] except for the hydraulic diameter which 
is now equal to the height of the duct for the polygonal cross- 
section. The solution domain is confined to the right half of 
the cross-section as shaded in Fig. I(b). This is because of 
the condition of symmetry and also as a result of the util- 
ization of the specific coordinate transformation method- 
ology. 

u= V= 

W= w 
T= Ti 
P= Oi 

0 

(b) 

FIG. 1. (a) An axial coordinate of the regular polygonal duct. (b) A cross-section of the duct. 
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Numerical solutions 
The solution methodology consists of two steps. The first 

step is to introduce a transformation of coordinates which 
maps the duct cross-section onto a rectangle. The second step 
is to reduce the three-dimensional problem, computationally, 
into a series of two-dimensional problems. The methodology 
for the first step is fully documented in earlier papers [68]. 
Specifically, the X, Y coordinates are transformed into q, l 
coordinates by the relation 

r~ = X/A(Y), l = Y where A(Y) = 6(y)/&. (1) 

The methodology to accomplish the second step is 
described by Patankar and Spalding [2]. A solution 
methodology for the HI boundary condition is described 
by Prakash and Liu [3]. 

Computations were performed with (16 x 30) grid points 
in the q-< plane. These grid points are distributed in a non- 
uniform manner with a higher concentration of grids close 
to the walls in both directions. Supplementary runs for n = 6 
wereperformedwith(lOx 18),(12x22),(16x30),(18x34), 
and (22 x 42) grid points to investigate grid size effects. The 
change in (f Re)r,d. between the coarse mesh (10 x 18) and 
the medium mesh (16 x 30) was 0.46% and between the 
medium mesh and the fine mesh (22 x 42) was 0.07%. 

The first dimensionless step size AZ[= (Az/D,)/Re] is 
taken as 2 x IO-‘. Starting with this value, subsequent step 
sizes are gradually increased using the relation AZ = (1.1) 
(previous AZ) until AZ < (Aq)&/lO, where (Av),,,~. is the 
minimum value of the control volume size in the q-direction. 
The maximum step size AZ = 1.1 x IO-“, 7.6x 10e5, 
3.9 x lo-’ and 2.4 x lO-4 for polygonal number n = 4, 6, 8 
and co, respectively. This criterion was determined empir- 
ically to obtain a stable solution. 

The axial step size is the controlling numerical parameter 
for the accuracy near the inlet. Therefore, supplementary 
runs were performed to investigate the step size effect for 
n = 6 and for the T boundary condition with the first step 
size as AZ = 2 x toe6 and the maximum step size as 
AZ = 7.6 x 10mh. These step sizes were l/IO of those used 
in the computations. The deviations of the average and 
the local Nusselt numbers (Nu,, and Nur) at (z/D,J/ 
(RePr) = 0.01 for Pr = 0.7 are 1.5 and 0.3%, respectively. 
These deviations decrease with increasing axial length and 
Prandtl number. 

RESULT AND DISCUSSIONS 

Friction factor and pressure drop 
The local friction factor f is defined as 

f = (-WWW 
(W2)/2 . (2) 

In the fully developed region, the friction factor becomes 
inversely proportional to the Reynolds number, and (f Re) 
becomes independent of z. 

The computed values of the fully developed friction factors 

(f Rehd are given in Table 1. Shih’s [9] fully developed 
results are also listed. As seen from this table, the results of 

Table 1. Fully developed values of (f Re)f,d, and incremental 
pressure drop K 

(f R&d K(a) 

Present Shih Present 
n work ]91 work Previous work 

4 14.167 14.227 1.445 1.551 (Shah [lo]) 
6 15.065 15.054 1.324 
8 15.381 15.412 1.292 
cc 15.925 16 1.253 1.25 (Prakash and Liu [3]) 

the present computation are in perfect agreement with those 
of Shih. 

The pressure drop from the inlet up to z is defined as 
Ap = p,-J?(Z) wherep, is the pressure at the inlet plane. This 
pressure drop can be expressed as 

(3) 

where (f Re)fd refers to the fully developed values, 
(f Re),d,(4z/D, Re) represents the pressure drop if the flow 
were fully developed all the way from the inlet, and K(z) is 
the incremental pressure drop due to the entrance effect. The 
asymptotic value of K for large z is called K(m), and it 
represents the total incremental pressure drop due to the 
entrance effect. This value is obtained graphically by ex- 
trapolating the relationship between K and the axial 
distance and is summarized in Table 2. They are compared 
with the values obtained by Shah [lo] for the square duct 
and Prakash and Liu [3] for the circular duct. The results 
indicate that the total incremental pressure drop K(c0) 
decreases with the polygonal number n. 

Thermal results: isothermal duct-the T boundary condition 
The T boundary condition corresponds to a uniform tem- 

perature, T, both axially and peripherally. The bulk tem- 
perature T&z) at an axial location z is given by 

T,,(z) = & C,pwTdA 
s P A 

where C,, ti, and A are the specific heat, total mass flow rate 
and the cross-sectional area, respectively. The heat transfer 
Q(Z) up to a distance z is equal to 

Q(z) = X,(T,--T,). 

The average Nusselt number up to the axial location z and 
the local peripheral average Nusselt number at an axial 
location are defined as 

Nu,, = 
QlbHtan dPh 

Vw- T,)k 
Nu = (dQl@Dh 

= CT,-T,)k 

Table 2. Fully developed Nusselt number values for the developed and slug flows 

Developed flow 

Present 
n work Previous work 

4 2.980 2.976 (Shah [IO]) 4.926 
6 3.353 - 5.380 
8 3.467 - 5.526 
00 3.654 3.657 5.769 

Slug flow 

Present 
work 

Developed flow 

Present 
work Previous work 

3.614 3.608 (Shah [lo]) 
4.021 4.002 (Cheng [I 11) 
4.207 4.153 (Cheng [ll]) 
4.367 4.364 

Slug flow 

Present 
work 

7.083 
7.533 
7.690 
7.962 

(6) 
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FIG. 2. Nusselt number with T boundary as a function of dimensionless axial length. 

where k, 4 and (TW - Th) are thermal conductivity, duct angle 
and the log-mean temperature difference given by 

The fully developed Nusselt number values for the developed 
flow are listed in Table 2. Shah [IO] did not present these 
values for the T boundary and for n = 6 and 8. The fully 
developed Nusselt number values for the slug flow are listed 
in Table 2. These values represent the results for very small 
Prandtl number (Pr << 1) and they differ from those obtained 
for the developed flow. 

Results for the Nusselt number as a function of the dimen- 
sionless axial distance [(z/D,)/(Re Pr)] are plotted in Fig. 2 
with the polygonal number n as a curve parameter. The 

6 

dashed lines in the figure indicate the local peripheral average 
Nusselt number and the chain lines represent the fully 
developed values. 

Thermal results : uniform heat input per unit axial length- 
HI boundary 

The local Nusselt number is defined as 

Nu 

HI 
= Q'lWtan 4Ph 

CT,--Tdk 
where T, is the wall temperature, which is uniform per- 
ipherally and Tb is the local bulk temperature given by equa- 
tion (4). 

The fully developed Nusselt number for the developed flow 
are listed in Table 2 as well as the values by Shih [9] and 

10 

- Fully Developed Flow 
8- 

n=n, 

--___ ----_ ----- 
----_ 

----_ _-___ -_-___ 
-_---_ 

i 
1 

----__ ---___ --____ 
_-____ 

I, I/I, --_-_ I==== ___-_ 1 

4 :;;:,y Developed 

I--J 1 
, / I1III I I I III,, 

0.01 0.1 Z/Dh 1 

RePr 

FIG. 3. Nusselt number with HI boundary as a function of dimensionless axial length. 
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Cheng [ 111. The present results are in good agreement with 
the values by Shah and Cheng. The fully developed Nusselt 
number values for the slug flow are also listed in Table 2. 
They differ from the values for the developed flow. Results 
for the Nu,,, as a function of the dimensionless axial distance 
[(z/D,)/(RePr)], are plotted in Fig. 3 with the polygonal 
number n as a curve parameter. The fully developed Nusselt 
number values are also plotted in this figure by chain lines. 

CONCLUDING REMARKS 

Three-dimensional heat transfer and fluid flow charac- 
teristics in the entrance region of a polygonal duct are 
analyzed numerically by a coordinate transformation tech- 
nique coupled with a calculation procedure for three-dimen- 
sional parabolic flows. The fully developed values of the 
Nusselt numbers and friction factors approach the available 
asymptotic results. The entry length results for the limiting 
case of a rectangular duct are in perfect agreement with the 
experimental and numerical results. 
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1. INTRODUCTION 

IN A RECENT study [l], the vaporization behavior of a dilute 
multicomponent fuel spray in a hot laminar airflow was 
examined. Several liquid- and gas-phase models, which 
account for the diffusive-convective processes inside and 
outside the droplet, were investigated. It was indicated that 
while the effect of transient processes in the liquid is quan- 
titative rather than qualitative for the single-component case, 
it can cause a more fundamental change in the gasification 
behavior of multicomponent fuel sprays. This is mainly due 
to the slow and often rate-controlling liquid mass diffusion 
process, and due to the volatility differential of the com- 
ponent fuels. It was further demonstrated that the effect of 
internal liquid motion is less important for the multi- 
component case as compared to the single component, since 
the liquid motion can enhance the mass transport along 
the streamlines and not across them. The effects of several 
parameters were studied in the cited paper. However, the 
influence of three key parameters ; namely the liquid Lewis 
number, volatility differential, and hot air stream tem- 
perature was not reported. In this paper, several additional 
results are presented, which focus on the influence of these 
parameters. In particular, the sensitivity of the spray vapor- 
ization behavior to the three liquid-phase models, namely 
the diffusion-limit, infinite-diffusion, and vortex models, is 

further examined as the above-mentioned parameters are 
varied. 

The present study is important because the recom- 
mendation of the diffusion-limit model is based on two 
conditions. One is that the rate of liquid mass diffusion is 
extremely slow as compared to the droplet surface regression 
rate. The second is that there exists a substantial volatility 
differential in order for the liquid mass diffusion to be impor- 
tant. Thus, it is of interest to identify the range of dominant 
parameters such as the liquid Lewis number, environment 
temperature, and volatility differential, where the mass 
diffusion is indeed rate controlling. 

2. THE DISCUSSION OF RESULTS 

The physical model and the governing equations are 
described in an earlier paper [l]. Essentially, a transient 
one-dimensional bicomponent fuel spray in a hot airflow is 
considered. There are three subsets of equations ; namely the 
gas-phase equations for the gas temperature, species mass 
fractions, velocity, and density; the liquid-phase equations 
for the position, velocity, and size of each group of droplets ; 
and the droplet equations which govern the unsteady tem- 
perature and liquid mass fractions inside the droplet. These 
equations are solved by a hybrid Eulerian-Lagrangian 
explicit-implicit scheme. 


